Running in the surf: hydrodynamics of the shore crab Grapsus tenuicrustatus.

نویسنده

  • M M Martinez
چکیده

When locomoting in water, animals experience hydrodynamic forces due to ambient water motion and their own motion through the water. Because an aquatic pedestrian must maintain contact with the substratum to locomote, hydrodynamic forces which can dislodge an animal have the capacity to constrain the postures, gaits and speeds an animal can use. This study measured hydrodynamic forces on the amphibious shore crab Grapsus tenuicrustatus in aquatic and terrestrial postures. The crabs' locomotory speeds and ambient water velocities in their habitat were considered in predicting the conditions under which a crab is likely to overturn or wash away. A non-moving crab can withstand 200% faster flow in the aquatic posture than in the terrestrial posture. A crab using the terrestrial posture while locomoting through still water experiences 132% greater drag and 17% greater acceleration reaction forces than it does in the aquatic posture. Due to the lower hydrodynamic forces in the aquatic posture, a crab could locomote up to 50% more quickly or through a faster water flow environment than it could in the terrestrial posture. In faster flow environments like wave-swept rocky shores, a crab in either posture would have to actively grasp the substratum to keep from being dislodged, preventing it from using a punting gait. In slower flow environments, animals can locomote faster and take advantage of different gaits that are not available to them in faster flow environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological Adaptation of the Amphibious Rocks Crab Grapsus tenuicrustatus from the Red Sea

The rate of weight specific oxygen consumption in the Red Sea supra littoral crab Grapsus tenuicrustatus was examined under aerial and aquatic conditions. This indicates that the smallest crabs had the highest weight specific oxygen consumption, and the rate of aquatic respiration was lower than that in air. The effect of temperature on the rate of oxygen consumption and heart beat was also inv...

متن کامل

Underwater punting by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water

As an animal moves from air to water, its effective weight is substantially reduced by buoyancy while the fluid-dynamic forces (e. g. lift and drag) are increased 800-fold. The changes in the magnitude of these forces are likely to have substantial consequences for locomotion as well as for resistance to being overturned. We began our investigation of aquatic pedestrian locomotion by quantifyin...

متن کامل

A molecular method for the detection of sally lightfoot crab larvae (Grapsus grapsus, Brachyura, Grapsidae) in plankton samples

The decapod Grapsus grapsus is commonly found on oceanic islands of the Pacific and Atlantic coasts of the Americas. In this study, a simple, quick and reliable method for detecting its larvae in plankton samples is described, which makes it ideal for large-scale studies of larval dispersal patterns in the species.

متن کامل

Transport of larvae and detritus across the surf zone of a steep reflective pocket beach

Larvae of many intertidal species develop offshore and must cross the surf zone to complete their onshore migration to adult habitats. Depending on hydrodynamics, the surf zone may limit this migration, especially on reflective rocky shores. As a logistically tractable analog of a rocky shore environment, we carried out a comprehensive biological and physical study of the hydrodynamics of a ste...

متن کامل

On the Choice of Random Wave Simulation in the Surf Zone Processes

In this paper, the two common approaches to account for wave randomness, the spectral approach and the wave-bywave approach, are compared through numerical experiments conducted with the coupling of a surf zone hydrodynamic model and a bedload sediment transport model. Special attention is paid to the wave nonlinearity and net cross-shore bedload transport predictions. The two approaches are fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 204 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2001